Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Antioxidants (Basel) ; 12(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37237900

ABSTRACT

Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.

2.
Molecules ; 27(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458647

ABSTRACT

Media supplementation with exogenous chemicals is known to stimulate the accumulation of important lipids produced by microalgae and thraustochytrids. However, the roles of exogenous chemicals in promoting and preserving the terpenoids pool of thraustochytrids have been rarely investigated. Here, we realized the effects of two media supplements-mannitol and biotin-on the biomass and squalene production by a thraustochytrid strain (Thraustochytrium sp. ATCC 26185) and elucidated their mechanism of action. A significant change in the biomass was not evident with the exogenous addition of these supplements. However, with mannitol (1 g/L) supplementation, the ATCC 26185 culture achieved the best concentration (642 ± 13.6 mg/L) and yield (72.9 ± 9.6 mg/g) of squalene, which were 1.5-fold that of the control culture (non-supplemented). Similarly, with biotin supplementation (0.15 mg/L), the culture showed 459 ± 2.9 g/L and 55.7 ± 3.2 mg/g of squalene concentration and yield, respectively. The glucose uptake rate at 24 h of fermentation increased markedly with mannitol (0.31 g/Lh-1) or biotin (0.26 g/Lh-1) supplemented culture compared with non-supplemented culture (0.09 g/Lh-1). In addition, the reactive oxygen species (ROS) level of culture supplemented with mannitol remained alleviated during the entire period of fermentation while it alleviated after 24 h with biotin supplementation. The ∆ROS with mannitol was better compared with biotin supplementation. The total antioxidant capacity (T-AOC) of the supplemented culture was more than 50% during the late stage (72-96 h) of fermentation. Our study provides the potential of mannitol and biotin to enhance squalene yield and the first lines of experimental evidence for their protective role against oxidative stress during the culture of thraustochytrids.


Subject(s)
Squalene , Stramenopiles , Antioxidants/pharmacology , Biotin , Culture Media/pharmacology , Dietary Supplements , Fermentation , Glucose , Mannitol/pharmacology , Squalene/pharmacology
3.
Mar Drugs ; 19(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34677463

ABSTRACT

Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.


Subject(s)
Docosahexaenoic Acids/metabolism , Microalgae/genetics , Animals , Aquatic Organisms , Cyclohexanones , Mutagenesis
4.
Mar Pollut Bull ; 124(1): 411-420, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28779889

ABSTRACT

In this study, we investigated the environmental impacts of scallop culture on two coastal estuaries adjacent the Bohai Sea including developing a quantitative PCR assay to assess the abundance of the bacterial pathogens Escherichia coli and Vibrio parahaemolyticus. Scallop culture resulted in a significant reduction of nitrogen, Chlorophyll a, and phosphorous levels in seawater during summer. The abundance of bacteria including V. parahaemolyticus varied significantly across estuaries and breeding seasons and was influenced by nitrate as well as nutrient ratios (Si/DIN, N/P). Bacterioplankton diversity varied across the two estuaries and seasons, and was dominated by Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes. Overall, this study suggests a significant influence of scallop culture on the ecology of adjacent estuaries and offers a sensitive tool for monitoring scallop contamination.


Subject(s)
Aquaculture , Pectinidae , Seawater/microbiology , Water Microbiology , Water Pollutants/analysis , Animals , Bacteria/isolation & purification , China , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring , Estuaries , Nitrogen/analysis , Phosphorus/analysis , Plankton , Seasons , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL